网格系统通过相邻表计为单只表计创建多条连接到一个中心采集器的较短路径,中心表计充当电力公司广域网的网关。目前有多家供应商提供网格系统,其数据速率通常为100 - 150kbps,采用FSK或扩频调制方案,一般工作在以915 MHz为中心的ISM频段,信道带宽为50 - 200 kHz。
星型系统主要使用特许执照频段中的窄带信号来连接相距较远但数量较少的中心采集器。中心采集器所需的数量较少,位于山顶或高楼楼顶等视线清晰的位置,但其发射功率较高。星型系统通常采用FSK调制,其数据速率低于带宽较宽的网格系统。除了所需中心采集器的数量较少外,星型系统的拥护者还提出它具有带内频谱无干扰和网络协议更简单的优势。
在美国,ISM频段和特许执照频段均已变得非常拥挤。对于网格系统和星型系统,这都意味着干扰是必须攻克的中心挑战。大规模计量网络的部署会显著提高频谱拥挤程度,因为系统的最大干扰源可能正是系统本身。
这种拥挤会给无线电和网络要求带来严重影响。例如,良好的空闲信道评估(CCA)和跳频程序可以简化空闲信道的查找。提高数据速率可以缩短各节点的传输时长,但其代价是链路裕量减少。对于无线电,这种拥挤还意味着阻塞和邻道抑制常常比接收灵敏度更紧要。
如上所述,计量基础设施的主要挑战在于表计的位置是固定的。它不像家用无线路由器,可以通过调整方向、高度或位置来解决干扰问题。此外,为了适合现有表计外壳,表计通常需要进行改装,因此几乎或根本不存在为增强RF性能而改变封装的灵活性。表计一般固定在离地仅一米左右的厚钢筋混凝土墙上。简单的视线模型难以有效地描述信道。
需要注意的干扰源因频段和地区的不同而异。在美国,特许执照频段和ISM频段系统均存在重大干扰源。常见干扰源包括电视白带信号、蜂窝载波和工作在同一频段的其它设备,这些设备可能是、也可能不是同一系统的一部分。就数据包结构、调制方案选择和发射频谱符合 FCC原则的程度而言,工作在同一频段的设备可能不是按照“和平共处”方针进行设计的。
对于已经部署的80%到90%的表计来说,通信相对较为容易。其余的10%到20%表计因为地理位置、物理对象、严重的局部干扰或附近噪声源等因素,面临着严峻的RF挑战。由于无法移动存在问题的表计,系统层面的解决方案只有增加数据采集器或中继器,增加PLC或蜂窝等辅助替代通信设备,或者增强无线电性能。广泛存在的计量基础设施最终必须极其鲁棒,提供100%的覆盖率。联系实际来说,大规模部署的电表数量可能是500万只,如果覆盖率只有99%,那么将有5万只电表无法读取。
智能电网在技术、市场和社会方面带来了许多挑战。RF设计人员必须提出新的优化措施,满足工业级产品的需求,使其能在日益拥挤的频谱环境中数十年如一日地工作,由此我们将获得能够灵活适应电力需求和供应发展的电网基础设施。